EFFECT OF HALL CURRENT IN THERMOELASTIC MATERIALS WITH DOUBLE POROSITY STRUCTURE

R. KUMAR
Department of Mathematics, Kurukshetra University
Kurukshetra, Haryana, INDIA
E-mail: Rajneesh_kuk@rediffmail.com
R. VOHRA*
Department of Mathematics and Statistics
H.P. University, Shimla, HP, INDIA
E-mail: richavhr88@gmail.com

Abstract

The present investigation is concerned with one dimensional problem in a homogeneous, isotropic thermoelastic medium with double porosity structure in the presence of Hall currents subjected to thermomechanical sources. A state space approach has been applied to investigate the problem. As an application of the approach, normal force and thermal source have been taken to illustrate the utility of the approach. The expressions for the components of normal stress, equilibrated stress and the temperature change are obtained in the frequency domain and computed numerically. A numerical simulation is prepared for these quantities. The effect of the Hartmann number is depicted graphically on the resulting quantities for a specific model. Some particular cases of interest are also deduced from the present investigation.

Key words: Hall current, double porosity, thermoelasticity, state space approach, thermomechanical sources.

1. Introduction

Porous media theories play an important role in many branches of engineering including the materials science, petroleum industry, chemical engineering, biomechanics and other fields of engineering. The representation of a fluid saturated porous medium as a single phase material has been virtually discarded. The material with pore spaces such as concrete can be treated easily because all concrete ingredients have the same motion if the concrete body is deformed. However, the situation is more complicated if the pores are filled with liquid and in that case the solid and liquid phases have different motions. Due to these different motions, different material properties and the complicated geometry of pore structures, the mechanical behavior of a fluid saturated porous thermoelastic medium becomes very difficult. So researchers have tried to overcome this difficulty and we can find many studies on porous media in the literature. A brief historical background of these theories is given by de Boer [1, 2].

The double porosity model represents a new possibility for the study of important problems concerning the civil engineering. It is well-known that, under super- saturation conditions due to water of other fluid effects, the so called neutral pressures generate unbearable stress states on the solid matrix and on the fracture faces, with severe (sometimes disastrous) instability effects like landslides, rock fall or soil fluidization (a typical phenomenon connected with propagation of seismic waves). In such a context, it seems possible, acting suitably on the boundary pressure state, to regulate the internal pressures in order to deactivate the noxious effects related to neutral pressures.

[^0]Wilson and Aifanits [3] presented the theory of consolidation with the double porosity. Khaled et al. [4] employed a finite element method to consider the numerical solutions of the differential equation of the theory of consolidation with double porosity developed by Aifantis [3]. Wilson and Aifantis [5] discussed the propagation of acoustics waves in a fluid saturated porous medium. Various authors discussed different problems in double porous media [6]-[14]. Svanadze [15]-[19] investigated some problems on elastic solids, viscoelastic solids and thermoelastic solids with double porosity. Scarpetta et al. [20, 21] proved the uniqueness theorems in the theory of thermoelasticity for solids with double porosity and also obtained the fundamental solutions in the theory of thermoelasticity for solids with double porosity.

In recent years the state space description of linear systems has been used extensively in various areas of engineering, such as the analysis of control systems. The state space approach offers an attractive way to avoid the difficulties of the traditional linear model approach. The state -space representation is a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract away from the number of inputs, outputs and states, the variables are expressed as vectors. If the dynamical system is linear and time invariant, the differential and algebraic equations may be written in a matrix form. The state-space representation provides a convenient and compact way to model and analyze systems with multiple inputs and outputs.

Bahar and Hetnarski [22]-[26] investigated a good number of problems in thermoelasticity by using the state space approach. Also Ezzat et al. [27], Maghraby et al.[28], Youssef and Al-Lehaibi [29], Othman [30], Elisbai and Youseff [31] and Sherief and El-Sayed [32] investigated different types of problems in different media by using the state space approach.

The foundations of magnetoelasticity were presented by Knopoff [33] and Chadwick [34] and developed by Kaliski and Petykiewicz [35]. Attention is paid to the interaction between the magnetic field and strain field in a thermoelastic solid due to its many applications in the fields of geophysics, plasma physics and related topics.

When the magnetic field is very strong, the conductivity will be a tensor and the effect of Hall current cannot be neglected. The conductivity normal to the magnetic field is reduced due to the free spiraling of electrons and ions about the magnetic lines of force before suffering collisions and a current is induced in a direction normal to both the electric and magnetic fields. This phenomenon is called the Hall effect. Authors such as Sarkar and Lahiri [36], Salem [37], Zakaria [38]-[40], Attia [41] have considered the effect of Hall currents for two dimensional problems in micropolar thermoelasticity.

In the present paper, we formulate the state space approach to the boundary value problem for a thermoelastic material with double porosity structure in the presence of Hall current subjected to thermomechanical sources. The expressions for normal stress, equilibrated stresses and temperature distribution are obtained in closed form, computed numerically and represented graphically for normal force and thermal source.

2 Basic equations

Following Iesan and Quintanilla [42], the field equations and the constitutive relations for a homogeneous thermoelastic material with double porosity structure, when the Hall current is taken into account, can be written as:
Eequation of motion

$$
\begin{equation*}
\mu \Delta u_{i}+(\lambda+\mu) u_{j, j i}+b \varphi_{, i}+d \psi_{, i}-\beta T_{, i}+F_{i}=\rho \ddot{u}_{i}, \tag{2.1}
\end{equation*}
$$

equilibrated stress equations of motion

$$
\begin{align*}
& \alpha \Delta \varphi+b_{l} \Delta \psi-b u_{r, r}-\alpha_{l} \varphi-\alpha_{3} \psi+\gamma_{1} T=\kappa_{l} \ddot{\varphi}, \tag{2.2}\\
& b_{1} \Delta \varphi+\gamma \Delta \psi-d u_{r, r}-\alpha_{3} \varphi-\alpha_{2} \psi+\gamma_{2} T=\kappa_{2} \ddot{\psi}, \tag{2.3}
\end{align*}
$$

equation of heat conduction

$$
\begin{equation*}
\beta T_{0} \dot{e}_{i i}+\gamma_{1} T_{0} \dot{\phi}+\gamma_{2} T_{0} \dot{\psi}+\rho C^{*} \dot{T}=K \nabla^{2} T, \tag{2.4}
\end{equation*}
$$

constitutive relations

$$
\begin{align*}
& t_{i j}=\lambda e_{r r} \delta_{i j}+2 \mu e_{i j}+b \delta_{i j} \varphi+d \delta_{i j} \psi-\beta \delta_{i j} T, \tag{2.5}\\
& \sigma_{i}=\alpha \varphi_{, i}+b_{l} \psi_{, i}, \tag{2.6}\\
& \zeta_{i}=b_{l} \varphi_{, i}+\gamma \Psi_{, i} \tag{2.7}
\end{align*}
$$

where $F_{i}=\mu_{0} \varepsilon_{i j r} J_{j} H_{r}$ is the Lorentz force.
The generalized Ohm's law including Hall current is

$$
\begin{equation*}
J_{i}=\sigma_{0}\left(E_{i}+\mu_{0} \varepsilon_{i j r} u_{j, t} H_{r}-\frac{\mu_{0}}{e n_{e}} \varepsilon_{i j r} J_{j} H_{r}\right) \tag{2.8}
\end{equation*}
$$

where $\sigma_{0}\left(=n_{e} e^{2} t_{e} / m_{e}\right)$ is the electrical conductivity; μ_{0} is the magnetic permeability; e is the charge of an electron; n_{e} is the number density of electrons; t_{e} is the electron collision time; m_{e} is the electron mass; E_{i} is the intensity tensor of the electric field; λ and μ are Lame's constants; ρ is the mass density; $\beta=(3 \lambda+2 \mu) \alpha_{t} ; \alpha_{t}$ is the coefficient of linear thermal expansion; C^{*} is the specific heat at constant strain; u_{i} is the displacement components; $t_{i j}$ is the stress tensor; $\varepsilon_{i j r}$ is the permutation symbol; μ_{0} is the magnetic permeability; J_{r} is the conduction current density; κ_{l} and κ_{2} are coefficients of equilibrated inertia; v_{1} is the volume fraction field corresponding to pores and v_{2} is the volume fraction field corresponding to fissures; φ and ψ are the volume fraction fields corresponding to v_{1} and ν_{2}, respectively; σ_{i} is the equilibrated stress corresponding to v_{1}; ζ_{i} is the equilibrated stress corresponding to v_{2}, K is the coefficient of thermal conductivity and $b, d, b_{1}, \gamma, \gamma_{1}, \gamma_{2}$ are constitutive coefficients; $\delta_{i j}$ is the Kronecker's delta; T is the temperature change measured form the absolute temperature $T_{0}\left(T_{0} \neq 0\right)$, a superposed dot represents differentiation with respect to time variable t.

$$
\nabla=\hat{i} \frac{\partial}{\partial x_{1}}+\hat{j} \frac{\partial}{\partial x_{2}}+\hat{k} \frac{\partial}{\partial x_{3}}, \quad \nabla^{2}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}},
$$

are the gradient and Laplacian operators, respectively.

3. Formulation and solution of the problem

We consider a homogeneous, isotropic, perfectly conducting thermoelastic solid with double porosity occupying the region $0 \leq x<\infty$. For a one dimensional problem, we take $u_{l}\left(x_{1}, t\right), \varphi\left(x_{1}, t\right), \psi\left(x_{I}, t\right), T\left(x_{1}, t\right)$. A uniform very strong magnetic field of strength H_{0} is assumed to be applied in the positive y-direction and we also assume that $E=0$. Under these assumptions, the generalized Ohm's law gives $J_{1}=J_{2}=0$ everywhere in the medium.

The current density components J_{3} is given by

$$
\begin{equation*}
J_{3}=\frac{\sigma_{0} \mu_{0} H_{0}}{1+m^{2}}\left(\frac{\partial u_{I}}{\partial t}\right) \tag{3.1}
\end{equation*}
$$

where $m=\omega_{e} t_{e}$ is the Hall parameter and $\omega_{e}=e \mu_{0} H_{0} / m_{e}$ is the electron frequency.
Let us introduce the following non-dimensional variables

$$
\begin{array}{ll}
x_{l}^{\prime}=\frac{\omega_{l}}{c_{l}} x_{l}, \quad u_{l}^{\prime}=\frac{\omega_{1}}{c_{l}} u_{l}, \quad t_{i j}^{\prime}=\frac{t_{i j}}{\beta T_{0}}, \quad M=\frac{\sigma_{0} \mu_{0}^{2} H_{0}^{2}}{\rho \omega}, \quad t^{\prime}=\omega_{l} t, \\
\varphi^{\prime}=\frac{k_{l} \omega_{l}^{2}}{\alpha_{l}} \varphi, \quad \psi^{\prime}=\frac{k_{I} \omega_{l}^{2}}{\alpha_{l}}, \quad T^{\prime}=\frac{T}{T_{0}}, \quad \sigma_{i}^{\prime}=\left(\frac{c_{l}}{\alpha \omega_{l}}\right) \sigma_{i}, \quad \zeta_{i}^{\prime}=\left(\frac{c_{l}}{\alpha \omega_{l}}\right) \zeta_{i} \tag{3.2}
\end{array}
$$

where $c_{l}^{2}=\frac{\lambda+2 \mu}{\rho}, \omega_{l}=\frac{\rho C^{*} c_{l}^{2}}{K}$ and M is the Hartmann number or magnetic parameter.
Making use of dimensionless quantities given in Eqs (3.2) in Eqs (2.1)-(2.4), (dropping primes for convenience), and assuming the time harmonic solution of the resulting equations, we obtain after some simplifications

$$
\begin{align*}
& \bar{u}_{, l l}=N_{l} \bar{u}+N_{2} \bar{\phi}_{, l}+N_{3} \bar{\psi}_{, l}+N_{4} \bar{T}_{, l}, \tag{3.3}\\
& \bar{\phi}_{, l l}=N_{5} \bar{u}_{, l}+N_{6} \bar{\phi}+N_{7} \bar{\psi}+N_{8} \bar{T}, \tag{3.4}\\
& \bar{\psi}_{, l l}=N_{9} \bar{u}_{, l}+N_{l l} \bar{\phi}+N_{l l} \bar{\psi}+N_{12} \bar{T}, \tag{3.5}\\
& \bar{T}_{, l l}=N_{13} \bar{u}_{, l}+N_{l 4} \bar{\phi}+N_{l 5} \bar{\psi}+N_{l 6} \bar{T} \tag{3.6}
\end{align*}
$$

where

$$
\begin{align*}
& N_{1}=-i \omega\left(\frac{M}{1+m^{2}}\right)-\omega^{2}, \quad N_{2}=-\delta_{1}, \quad N_{3}=-\delta_{2}, \quad N_{4}=\delta_{3}, \quad M_{1}=\frac{-\delta_{5}}{\delta_{4}}, \quad M_{2}=\frac{\delta_{6}}{\delta_{4}}, \\
& M_{3}=\frac{\delta_{7}-\omega^{2}}{\delta_{4}}, \quad M_{4}=\frac{\delta_{8}}{\delta_{4}}, \quad M_{5}=\frac{-\delta_{9}}{\delta_{4}}, \quad M_{6}=\frac{-\delta_{10}}{\delta_{11}}, \quad M_{7}=\frac{\delta_{12}}{\delta_{11}}, \quad M_{8}=\frac{\delta_{13}}{\delta_{11}}, \\
& M_{9}=\frac{\delta_{14}-\omega^{2}}{\delta_{11}}, \quad M_{10}=\frac{-\delta_{15}}{\delta_{11}}, \quad M_{11}=\frac{\delta_{17}}{\delta_{20}}, \quad M_{12}=\frac{\delta_{18}}{\delta_{20}}, \quad M_{13}=\frac{\delta_{19}}{\delta_{20}}, \quad M_{14}=\frac{1}{\delta_{20}}, \\
& \delta_{20}=\frac{\delta_{16}}{-i \omega}, \quad N_{13}=\delta_{16}, \quad N_{14}=\delta_{17}, \quad N_{15}=\delta_{18}, \quad N_{16}=1, \tag{3.7}\\
& M_{15}=1-M_{1} M_{6}, \quad N_{5}=\frac{M_{1} M_{7}+M_{2}}{M_{15}}, \quad N_{6}=\frac{M_{1} M_{8}+M_{3}}{M_{15}}, \quad N_{7}=\frac{M_{1} M_{9}+M_{4}}{M_{15}},
\end{align*}
$$

$$
\begin{aligned}
& N_{8}=\frac{M_{1} M_{10}+M_{5}}{M_{15}}, \quad N_{9}=M_{6} N_{5}+M_{7}, \quad N_{10}=M_{6} N_{6}+M_{8}, \quad N_{11}=M_{6} N_{7}+M_{9}, \\
& N_{12}=M_{6} N_{8}+M_{10}, \quad \delta_{1}=\frac{\mathrm{b} \alpha_{1}}{\rho C_{1}^{2} k_{1} \omega_{1}{ }^{2}}, \quad \delta_{2}=\frac{\mathrm{d} \alpha_{1}}{\rho C_{1}^{2} k_{1} \omega_{1}{ }^{2}}, \quad \delta_{3}=\frac{\beta \mathrm{T}_{0}}{\rho C_{1}^{2}}, \quad \delta_{4}=\frac{\alpha}{C_{1}^{2} k_{1}}, \\
& \delta_{5}=\frac{b_{1}}{C_{1}^{2} k_{1}}, \quad \delta_{6}=\frac{b}{\alpha_{1}}, \quad \delta_{7}=\frac{\alpha_{1}}{k_{1} \omega_{1}{ }^{2}}, \quad \delta_{8}=\frac{\alpha_{3}}{k_{1} \omega_{1}{ }^{2}}, \quad \delta_{9}=\frac{\gamma_{1} T_{0}}{\alpha_{1}}, \quad \delta_{10}=\frac{b_{1}}{C_{1}^{2} k_{2}}, \\
& \delta_{11}=\frac{\gamma}{C_{1}^{2} k_{2}}, \quad \delta_{12}=\frac{d k_{1}}{\alpha_{1} k_{2}}, \quad \delta_{13}=\frac{\alpha_{3}}{k_{2} \omega_{1}{ }^{2}}, \quad \delta_{14}=\frac{\alpha_{2}}{k_{2} \omega_{1}{ }^{2}}, \\
& \delta_{15}=\frac{\gamma_{2} T_{0} k_{1}}{\alpha_{1} k_{2}}, \quad \delta_{16}=\frac{\beta C_{1}^{2}}{K \omega_{1}}, \quad \delta_{17}=\frac{\gamma_{1} \alpha_{1} C_{1}^{2}}{K k_{1} \omega_{1}{ }^{3}}, \quad \delta_{18}=\frac{\gamma_{2} \alpha_{1} C_{1}^{2}}{K k_{1} \omega_{1}{ }^{3}} .
\end{aligned}
$$

4. State -space formulation

Choosing as state variables the displacement \bar{u}, volume fraction $\bar{\varphi}$ and $\bar{\psi}$, temperature change \bar{T} in the x-direction, then the equations can be written in the matrix form as

$$
\begin{equation*}
\frac{d V(x, \omega)}{d x}=A(\omega) V(x, \omega) \tag{4.1}
\end{equation*}
$$

and the values of $A(\omega), V(x, \omega)$ are given in Appendix I.
The formal solution of the system (4.1) can be written in the form

$$
\begin{equation*}
V(x, \omega)=\exp [A(\omega) x] V(0, \omega) . \tag{4.2}
\end{equation*}
$$

The value of $V(0, \omega)$ is given in Appendix I.
We shall use the well-known Cayley-Hamilton theorem to find the form of the matrix $\exp [A(\omega) x]$. The characteristics equation of the matrix $A(\omega)$ can be written as

$$
\begin{equation*}
\lambda^{8}+D_{1} \lambda^{6}+D_{2} \lambda^{4}+D_{3} \lambda^{2}+D_{4}=0 \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& D_{1}=-N_{1}-N_{6}-N_{11}-N_{16}-N_{2} N_{5}-N_{3} N_{9}-N_{4} N_{13}, \\
& D_{2}=N_{1} N_{6}+N_{1} N_{11}+N_{1} N_{16}+N_{6} N_{11}+N_{6} N_{16}-N_{7} N_{10}-N_{8} N_{14}+N_{11} N_{16}+ \\
& -N_{12} N_{15}-N_{2} N_{7} N_{9}+N_{3} N_{6} N_{9}+N_{2} N_{5} N_{11}+N_{2} N_{5} N_{16}-N_{3} N_{5} N_{10}+N_{3} N_{9} N_{16}+ \\
& -N_{2} N_{8} N_{13}-N_{4} N_{5} N_{14}+N_{4} N_{6} N_{13}-N_{4} N_{9} N_{15}-N_{3} N_{12} N_{13}+N_{4} N_{11} N_{13},
\end{aligned}
$$

$$
\begin{align*}
& D_{3}=-N_{6} N_{11} N_{16}+N_{7} N_{10} N_{16}-N_{1} N_{6} N_{11}+N_{1} N_{7} N_{10}-N_{1} N_{6} N_{16}+N_{1} N_{8} N_{14}-N_{1} N_{11} N_{16}+ \\
& +N_{1} N_{12} N_{15}+N_{6} N_{12} N_{15}-N_{7} N_{12} N_{14}-N_{8} N_{10} N_{15}+N_{8} N_{11} N_{14}+N_{2} N_{7} N_{9} N_{16}-N_{3} N_{6} N_{9} N_{16}+ \\
& -N_{2} N_{8} N_{9} N_{15}+N_{3} N_{8} N_{9} N_{14}+N_{4} N_{6} N_{9} N_{15}-N_{4} N_{7} N_{9} N_{14}-N_{2} N_{5} N_{11} N_{16}+N_{3} N_{5} N_{10} N_{16}+ \\
& +N_{2} N_{5} N_{12} N_{15}-N_{2} N_{7} N_{12} N_{13}+N_{2} N_{8} N_{11} N_{13}-N_{3} N_{5} N_{12} N_{14}+N_{3} N_{6} N_{12} N_{13}-N_{3} N_{8} N_{10} N_{13}+ \\
& -N_{4} N_{5} N_{10} N_{15}+N_{4} N_{5} N_{11} N_{14}-N_{4} N_{6} N_{11} N_{13}+N_{4} N_{7} N_{10} N_{13}, \\
& D_{4}=N_{1} N_{6}\left(N_{11} N_{16}-N_{12} N_{15}\right)+N_{1} N_{7}\left(N_{12} N_{14}-N_{10} N_{16}\right)+N_{1} N_{8}\left(N_{10} N_{15}-N_{11} N_{14}\right) \text { (4.4) } \tag{4.4}
\end{align*}
$$

Equation (4.3) is biquadrate in λ^{2}, yields four roots: $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$.
Now the Taylor series expansion for the matrix exponential in Eq.(4.2) is given by

$$
\begin{equation*}
\exp [A(\omega) x]=\sum_{n=0}^{\infty}\left\{\frac{[A(\omega) x]^{n}}{n!}\right\} . \tag{4.5}
\end{equation*}
$$

Using the Cayley-Hamilton theorem, this infinite series can be truncated as

$$
\begin{equation*}
\exp [A(\omega) x]=a_{0} I+a_{1} A+a_{2} A^{2}+a_{3} A^{3} \tag{4.6}
\end{equation*}
$$

where $a_{0}, a_{1}, a_{2}, a_{3}$ are parameters depending on x and ω.
According to the Cayley-Hamilton theorem the characteristic roots $-\lambda_{1},-\lambda_{2},-\lambda_{3},-\lambda_{4}$ of the matrix A must satisfy Eq.(4.6). Therefore, we get

$$
\begin{align*}
& \exp \left[-\lambda_{I} x\right]=a_{0} I-a_{1} \lambda_{1}+a_{2} \lambda_{I}{ }^{2}-a_{3} \lambda_{1}{ }^{3}, \\
& \exp \left[-\lambda_{2} x\right]=a_{0} I-a_{1} \lambda_{2}+a_{2} \lambda_{2}{ }^{2}-a_{3} \lambda_{2}{ }^{3}, \tag{4.7}\\
& \exp \left[-\lambda_{3} x\right]=a_{0} I-a_{1} \lambda_{3}+a_{2} \lambda_{3}{ }^{2}-a_{3} \lambda_{3}{ }^{3}, \\
& \exp \left[-\lambda_{4} x\right]=a_{0} I-a_{1} \lambda_{4}+a_{2} \lambda_{4}{ }^{2}-a_{3} \lambda_{4}{ }^{3} .
\end{align*}
$$

Solving the above system of equations, we obtain the value of parameters $a_{0}, a_{1}, a_{2}, a_{3}$ and these values are given in Appendix I.

Therefore, we have

$$
\begin{equation*}
\exp [A(\omega) x]=L(x, \omega) \tag{4.8}
\end{equation*}
$$

where $L(x, w)$ is a 8×8 matrix with the components

$$
\begin{aligned}
& l_{11}=a_{0}+a_{2} N_{l}, \quad l_{12}=a_{3} R_{1}, \quad l_{13}=a_{3} R_{2}, \quad l_{14}=a_{3} R_{3}, \quad l_{21}=a_{3} R_{5}, \quad l_{22}=a_{0}+a_{2} N_{6}, \\
& l_{23}=a_{2} N_{7}, l_{24}=a_{2} N_{8}, l_{31}=a_{3} R_{9}, l_{32}=a_{2} N_{10}, l_{33}=a_{0}+a_{2} N_{11}, l_{34}=a_{2} N_{12}, l_{41}=a_{3} R_{13},
\end{aligned}
$$

$$
\begin{align*}
& l_{42}=a_{2} N_{14}, \quad l_{43}=a_{2} N_{15}, \quad l_{44}=a_{0}+a_{2} N_{16}, \quad R_{1}=N_{2} N_{6}+N_{3} N_{10}+N_{4} N_{14}, \tag{4.9}\\
& R_{2}=N_{2} N_{7}+N_{3} N_{11}+N_{4} N_{15}, \quad R_{3}=N_{2} N_{8}+N_{3} N_{12}+N_{4} N_{16}, \\
& R_{5}=N_{1} N_{5}, \quad R_{9}=N_{1} N_{9}, \quad R_{13}=N_{1} N_{13} .
\end{align*}
$$

Rewriting Eq.(4.2) with the aid of Eq.(4.8) yields

$$
\begin{equation*}
V(x, \omega)=L(x, \omega) V(0, \omega) . \tag{4.10}
\end{equation*}
$$

Therefore, we obtain

$$
\left[\begin{array}{l}
\bar{u} \tag{4.11}\\
\bar{\varphi} \\
\bar{\psi} \\
\bar{T}
\end{array}\right]=\left[\begin{array}{llll}
l_{11} & l_{12} & l_{13} & l_{14} \\
l_{21} & l_{22} & l_{23} & l_{24} \\
l_{31} & l_{32} & l_{33} & l_{34} \\
l_{41} & l_{42} & l_{43} & l_{44}
\end{array}\right]
$$

5. Boundary conditions

A homogeneous isotropic thermoelastic solid with double porosity structure occupying the region $0 \leq x<\infty$ is considered. The bounding plane $x=0$ is subjected to normal force and thermal source. Mathematically these can be written as

$$
\begin{equation*}
t_{11}=-F_{1} \exp [-i \omega t], \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\sigma_{l}=-F_{1} \exp [-i \omega t], \tag{5.1}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\zeta_{1}=-F_{1} \exp [-i \omega t], \tag{5.2}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
T=F_{2} \exp [-i \omega t] \tag{5.3}
\end{equation*}
$$

where F_{1} and F_{2} are the magnitude of the force and constant temperature applied on the boundary, respectively.

Substituting the values of $u, \varphi, \psi, T, t_{11}, \sigma_{l}$ and ζ_{l} from Eqs (2.1), (2.2), (2.3), (4.10) in to Eqs (5.1)(5.4) and with the aid of Eqs (3.1) and (3.7), after some lengthy calculations, we obtain the normal stress, equilibrated stresses and temperature change as

$$
\begin{align*}
& t_{11}=\left(S_{1} \frac{\Gamma_{1}}{\Gamma}+S_{2} \frac{\Gamma_{2}}{\Gamma}+S_{3} \frac{\Gamma_{3}}{\Gamma}+S_{4} \frac{\Gamma_{4}}{\Gamma}\right) e^{-i \omega t}, \tag{5.5}\\
& \sigma_{1}=\left(S_{5} \frac{\Gamma_{1}}{\Gamma}+S_{6} \frac{\Gamma_{2}}{\Gamma}+S_{7} \frac{\Gamma_{3}}{\Gamma}+S_{8} \frac{\Gamma_{4}}{\Gamma}\right) e^{-i \omega t}, \tag{5.6}\\
& \zeta_{1}=\left(S_{9} \frac{\Gamma_{1}}{\Gamma}+S_{10} \frac{\Gamma_{2}}{\Gamma}+S_{11} \frac{\Gamma_{3}}{\Gamma}+S_{12} \frac{\Gamma_{4}}{\Gamma}\right) e^{-i \omega t}, \tag{5.7}
\end{align*}
$$

$$
\begin{equation*}
T=\left(l_{41} \frac{\Gamma_{1}}{\Gamma}+l_{42} \frac{\Gamma_{2}}{\Gamma}+l_{43} \frac{\Gamma_{3}}{\Gamma}+l_{44} \frac{\Gamma_{4}}{\Gamma}\right) e^{-i \omega t} . \tag{5.8}
\end{equation*}
$$

The values of $S_{1}, S_{2}, \ldots \ldots \ldots \ldots, S_{12}$ are given in Appendix II.

6. Particular cases

Case 6.1: If $F_{2}=0$ in Eqs (5.5)-(5.8), we obtain the corresponding expressions for normal force.

Case 6.2: If $F_{l}=0$ in Eqs (5.5)-(5.8), we get the corresponding expressions for thermal source.

7. Numerical results and discussion

The material chosen for the purpose of numerical computation is copper, whose physical data is given by Sherief and Saleh [43] as

$$
\begin{aligned}
& \lambda=7.76 \times 10^{10} \mathrm{Nm}^{-2}, \quad c^{*}=3.831 \times 10^{3} \mathrm{~m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}, \quad \mu=3.86 \times 10^{10} \mathrm{Nm}^{-2}, \\
& k=3.86 \times 10^{3} \mathrm{Ns}^{-1} \mathrm{~K}^{-1}, \quad \omega=1 \times 10^{11} \mathrm{~s}^{-1}, \quad T_{0}=0.293 \times 10^{3} \mathrm{~K}, \\
& \alpha_{t}=1.78 \times 10^{-5} \mathrm{~K}^{-1}, \quad t=0.1 \mathrm{~s}, \quad \rho=8.954 \times 10^{3} \mathrm{Kgm}^{-3} .
\end{aligned}
$$

Following Khalili [44], the double porous parameters are taken as

$$
\begin{aligned}
& \alpha_{2}=2.4 \times 10^{10} \mathrm{Nm}^{-2}, \quad \alpha_{3}=2.5 \times 10^{10} \mathrm{Nm}^{-2}, \quad \alpha=1.3 \times 10^{-5} \mathrm{~N}, \quad \gamma=1.1 \times 10^{-5} \mathrm{~N} \\
& \gamma_{1}=0.16 \times 10^{5} \mathrm{Nm}^{-2}, \quad b_{1}=0.12 \times 10^{-5} \mathrm{~N}, \quad d=0.1 \times 10^{10} \mathrm{Nm}^{-2}, \\
& \gamma_{2}=0.219 \times 10^{5} \mathrm{Nm}^{-2}, \quad k_{1}=0.1456 \times 10^{-12} \mathrm{Nm}^{-2} \mathrm{~s}^{2}, \quad b=0.9 \times 10^{10} \mathrm{Nm}^{-2}, \\
& \alpha_{1}=2.3 \times 10^{10} \mathrm{Nm}^{-2}, \quad k_{2}=0.1546 \times 10^{-12} \mathrm{Nm}^{-2} \mathrm{~s}^{2} .
\end{aligned}
$$

Following Zakaria [40], the electric constants are taken as

$$
\begin{aligned}
& \sigma_{0}=9.36 \times 10^{5} \mathrm{Col}^{2} / \text { Cl.cm.s } \\
& H_{0}=10^{8} \mathrm{Col} / \mathrm{cm} . \mathrm{s}
\end{aligned}
$$

The software MATLAB has been used to determine the values of normal stress, equilibrated stresses and temperature change. Figures 1-4 and Figs 5-8 depict the variations of normal stress, equilibrated stresses and temperature distribution with the Hartmann number (M) with respect to distance x for normal force and thermal source, respectively. In all the figures, the solid line corresponds to the value of $M=0$, small dashed line corresponds to the value of $M=1$ and big dashed line corresponds to the value of $M=1.5$.

Normal Force

Figure 1 shows the variation of normal stress t_{11} with respect to distance x. The variation is similar for all values of the Hartmann number. It is noticed that with the increase in the value of M, the value of normal stress also increases.

Fig.1. Variation of normal stress t_{11} w.r.t. x.

Fig.2. Variation of equilibrated stress σ_{l} w.r.t x.

Figures 2 and 3 depict the variations of equilibrated stresses σ_{1} and τ_{1} with respect to distance x, respectively. For $M=0$, the value of σ_{1} and τ_{1} increases for $0<x<2$, again decreases for $2 \leq x<4$ and then again increases for $4 \leq x<6$ and further decreases away from the source. For $M=1$ and 1.5 , a similar behavior is noticed near the application of the source whereas on opposite behavior is noticed away from the source.

Figure 4 represents the variation of temperature change T with respect to distance x. It is found that the behavior is similar for $M=0$ and l while it becomes reverse for $M=1.5$.

Fig.3. Variation of equilibrated stress ζ_{I} w.r.t. x.

Fig.4. Variation of temperature change T w.r.t x.

Thermal Source

Figure 5 depicts the variation of normal stress t_{11} with respect to distance x. The variation is similar for all the three cases under consideration $(M=0,1,1.5)$. It is noticed that with the increase in the value of M , the value of normal stress also increases.

Fig.5. Variation of normal stress t_{11} w.r.t. x.

Fig.6. Variation of equilibrated stress σ_{l} w.r.t x.

Figures 6 and 7 show the variation of equilibrated stresses σ_{1} and τ_{1} with respect to distance x, respectively. The variation is of oscillatory nature for $M=0$ while the same behavior is noticed for $M=1$ and 1.5 , i.e., monotonically increasing and decreasing.

Fig.7. Variation of equilibrated stress $\zeta_{/}$w.r.t. x.

Fig.8. Variation of temperature change T w.r.t x.

Figure 8 represents the variation of temperature change T with respect to distance x. It is noticed that with the increase in the value of M , the value of temperature change decreases.

8 Conclusion

The behaviour of normal stress, equilibrated stresses and temperature distribution in an isotropic homogeneous thermoelastic material with double porosity structure under the effect of Hall currents has been investigated for the normal force and thermal source by using the state space approach. It is observed that with the increase in the value of the Hartmann number, normal stress also increases. The behavior of equilibrated stresses is oscillatory in nature for $M=0$ where for $M=1$ and 1.5 , the behavior is same near the application of the source while a reverse behavior is observed away from the source. For normal force, the behavior of temperature change is similar for $M=0$ and l, whereas an opposite behavior is observed for $M=1.5$ while in the case of thermal source, the value of temperature changes decreases with the increase in value of the Hartmann number.

Nomenclature

```
\(b, d, b_{1}, \gamma, \gamma_{l}, \gamma_{2}\) - constitutive coefficients
            \(C^{*}\) - specific heat at constant strain
            \(E_{i}\) - intensity tensor of the electric field
            \(e\) - charge of an electron
            \(J_{r}\) - conduction current density
            \(K\) - coefficient of thermal conductivity
            \(m_{e}\) - electron mass
            \(n_{e}\) - number density of electrons
            \(T=T^{*}-T_{0} \quad\) - small temperature increment
            \(t_{e}\) - electron collision time
            \(t_{i j}\) - stress tensor
            \(u_{i}\) - displacement components
            \(\alpha_{t}\) - coefficient of linear thermal expansion
            \(\delta_{i j}\) - Kronecker's delta
            \(\varepsilon_{i j r}\) - permutation symbol
            \(\zeta_{i}\) - equilibrated stress corresponding to \(v_{2}\)
            \(\kappa_{1}, \kappa_{2}\) - coefficients of equilibrated inertia
            \(\lambda, \mu\) - Lame's constants
            \(\mu_{0}\) - magnetic permeability
            \(v_{1}\) - volume fraction field corresponding to pores
            \(v_{2}\) - volume fraction field corresponding to fissures
            \(\rho\) - mass density
            \(\sigma_{0}\) - electrical conductivity
            \(\sigma_{i}\) - equilibrated stress corresponding to \(v_{l}\)
            \(\varphi\) - volume fraction field corresponding to \(v_{1}\)
            \(\psi\) - volume fraction field corresponding to \(v_{2}\)
```


References

[1] Boer R.DE. and Ehlers W. (1988): A historical review of the foundation of porous media theories. - Acta Mech., vol.74, pp.1-8
[2] Boer R.DE. (2000): Theory of Porous Media. - New York: Springer-Verleg.
[3] Wilson R.K. and Aifantis E.C. (1982): On the theory of consolidation with double porosity. - Int. J. Engg. Sci., vol.20, pp.1009-1035.
[4] Khaled M.Y., Beskos D.E. and Aifantis E.C. (1984a): On the theory of consolidation with double porosity-III. Int. J. Numer. Analy. Meth. Geomech., vol.8, pp.101-123.
[5] Wilson R.K. and Aifantis E.C. (1984b): A double porosity model for acoustic wave propagation in fractured porous rock. - Int. J. Engg. Sci., vol.22, pp.8-10, 1209-1227.
[6] Beskos D.E. and Aifantis E.C. (1986): On the theory of consolidation with double porosity-II. - Int. J. Engg. Sci., vol.24, pp.1697-1716.
[7] Khalili N. and Valliappan S. (1996): Unified theory of flow and deformation in double porous media. - Eur. J. Mech. A, Solids, vol.15, pp.321-336.
[8] Aifantis E.C. (1977): Introducing a multi -porous medium. - Developments in Mechanics, vol.8, pp.209-211.
[9] Aifantis E.C. (1979): On the response of fissured rocks. - Developments in Mechanics, vol.10, pp.249-253.
[10] Aifantis E.C. (1980a): On the problem of diffusion in solids. - Acta Mechanica, vol.37, pp.265-296.
[11] Aifantis E.C. (1980b): The Mechanics of Diffusion in Solids. - T.A.M. Report No.440, Dept. of Theor. Appl. Mech., University of Illinois, Urbana, Illinois.
[12] Aifantis E.C. (1980c): On the problem of diffusion in solids. - Acta Mechanica, vol.37, pp.265-296.
[13] Khalili N. and Selvadurai A.P.S. (2003): A Fully Coupled Constitutive Model for Thermo-hydro -mechanical Analysis in Elastic Media with Double Porosity. - Geophys. Res. Lett., vol.30, No. 2268.
[14] Straughan B. (2013): Stability and uniqueness in double porosity elasticity. - Int. J. Eng. Sci., vol.65, pp.1-8.
[15] Svanadze M. (2005): Fundamental solution in the theory of consolidation with double porosity. - J. Mech. Behav. Mater., vol.16, pp.123-130.
[16] Svanadze M. (2010): Dynamical problems on the theory of elasticity for solids with double porosity. - Proc. Appl. Math. Mech., vol.10, pp.209-310.
[17] Svanadze M. (2012): Plane waves and boundary value problems in the theory of elasticity for solids with double porosity. - Acta Appl. Math., vol.122, pp.461-471.
[18] Svanadze M. (2014a): On the theory of viscoelasticity for materials with double porosity. - Disc. and Cont. Dynam. Syst. Ser. B, vol.19, pp.2335-2352.
[19] Svanadze M. (2014b): Uniqueness theorems in the theory of thermoelasticity for solids with double porosity. Meccanica, vol.49, pp.2099-2108.
[20] Scarpetta E., Svanadze M. and Zampoli V. (2014c): Fundamental solutions in the theory of thermoelasticity for solids with double porosity. - J. Therm. Stresses, vol.37, pp.727-748.
[21] Scarpetta E. and Svanadze M. (): Uniqueness Theorems in the Quasi-Static Theory of Thermo Elasticity for Solids with Double Porosity. - J. Elas., DOI 10.1007/s10659-014-9505-2.
[22] Bahar L.Y. and Hetnarski R.B. (1977a): Transfer matrix approach thermoelasticity. - Proceedings of the Fifteenth Midwestern Mechanics Conference, Chicago, pp.161-163.
[23] Bahar L.Y. and Hetnarski R.B. (1977b): Coupled thermoelasticity of layered medium. - Proceedings of the Fourteenth Annual Meeting of the Society of Engineering Science, Lehigh University, Bethlehem, PA, pp.813-816.
[24] Bahar L.Y. and Hetnarski R.B. (1978): State space approach to thermoelasticity. - J. Therm. Stresses, vol.1, No.1, pp.135-145.
[25] Bahar L.Y. and Hetnarski R.B. (1979): Connection between the thermoelastic potential and the state space formulation of thermoelasticity. - J. Therm. Stresses, vol.2, pp.283-290.
[26] Bahar L.Y. and Hetnarski R.B. (1980): Coupled thermoelasticity of a layered medium. - J. Therm. Stresses, vol.3, pp.141-152.
[27] Ezzat M.A., Othman M.A. and El-Karamany A.S. (2002): State space approach to generalized thermoviscoelasticity with two relaxation times. - Int. J. Engg. Sci., vol.40, pp.283-302.
[28] El-Maghraby N.M., El-Bary A.A. and Youssef H.M. (2006): State space approach to thermoelastic problem with vibrational stress. - Computational Mathematics and Modelling, vol.17, pp.243-253.
[29] Youssef H.M. and Al-Lehaibi E.A. (2007): State space approach of two-temperature generalized thermoelasticity of one-dimensional problem. - Int. J. Solid. Struct., vol.44, pp.1550-1562.
[30] Othman M.I.A. (2011a): State space approach to the generalized thermoelastic problem with temperature dependent elastic moduli and internal heat sources. - J. Appl. Mech. Tech. Phys., vol.52, pp.644-656.
[31] Elisbai K.A. and Youseff H.M. (2011b): State space approach to vibration of gold nano-beam induced by ramp type heating without heating energy dissipation in femtoseconds scale. - J. Therm. Stresses, vol.34, pp.244-263.
[32] Sherief H.H. and El-Sayed A.M. (2014): State space approach to two-dimensional generalized micropolar thermoelasticity. - Z. Angew. Math. Phys., DOI 10.1007/s00033-014-0442.
[33] Knopoff L. (2005): The interaction between elastic wave motion and a magnetic field in a perfectly conducting medium. - Int. J. Solids and Structures, vol.42, pp.6319-6334.
[34] Chadwick P. (1957): Ninth Int. Congr. Appl. Mech., vol.7, pp. 143.
[35] Kaliski S. and Petykiewicz J. (1959): Equation of motion coupled with the field of temperature in magnetic field involving mechanical and electrical relaxation for anisotropic bodies. - Proc. Vibr. Probl., vol.4.
[36] Sarkar N. and Lahiri A. (2012): Temperature rate dependent generalized thermoelasticity with modified Ohm's law. - International Journal of Computational Materials Science and Engineering, vol.1, No.4, pp.1-23.
[37] Salem A.M. (2007): Hall- Current effects on MHD flow of a Power-Law fluid over a rotating disk. - Journal of the Korean Physical Society, vol.50, pp.28-33.
[38] Zakaria M. (2011): Effect of Hall current on generalized magneto-thermoelasticity micropolar solid subjeted to ramp-type heating. - American Journal of Materials Science, vol.1, pp.26-39.
[39] Zakaria M. (2012): Effects of Hall current and rotation on magneto-micropolar generalized thermoelasticity due to ramp-type heating. - International Journal of Electromagnetics and Applications, vol.2, No.3, pp.24-32.
[40] Zakaria M. (2014): Effect of Hall current on magneto-thermoelasticity micropolar solid subjected to ramp-type heating. - International Applied Mechanics, vol.50, No.1, pp.92-104.
[41] Attia H.A. (2011): A two dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation. - Sadhana, Indian Academy of Sciences, vol.36, pp.411-423.
[42] Iesan D. and Quintanilla R. (2014): On a theory of thermoelastic materials with a double porosity structure. - J. Therm. Stresses, vol.37, pp.1017-1036.
[43] Sherief H. and Saleh H. (2005): A half space problem in the theory of generalized thermoelastic diffusion. - Int. J. Solid and Structures, vol.42, pp.4484-93.
[44] Khalili N. (2003): Coupling effects in double porosity media with deformable matrix. - Geophys. Res. Lett., vol.30, No.22, 2153, DOI 10.1029/2003GL018544.

Received: January 14, 2016
Revised: March 14, 2017

APPENDIX I

$$
\begin{aligned}
& A(x, w)=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
N_{1} & 0 & 0 & 0 & 0 & N_{2} & N_{3} & N_{4} \\
0 & N_{6} & N_{7} & N_{8} & N_{5} & 0 & 0 & 0 \\
0 & N_{10} & N_{11} & N_{l 2} & N_{9} & 0 & 0 & 0 \\
0 & N_{14} & N_{15} & N_{16} & N_{13} & 0 & 0 & 0
\end{array}\right], \\
& V(x, w)=\left[\begin{array}{c}
\bar{u}(x, w) \\
\bar{\varphi}(x, w) \\
\bar{\psi}(x, w) \\
\bar{T}(x, w) \\
(\bar{u}(x, w))_{, l} \\
(\bar{\varphi}(x, w))_{, l} \\
(\bar{\psi}(x, w))_{, l} \\
(\bar{T}(x, w))_{, l}
\end{array}\right], \quad V(0, w)=\left[\begin{array}{c}
\bar{u}(0 w) \\
\bar{\varphi}(0, w) \\
\bar{\psi}(0, w) \\
\bar{T}(0, w) \\
(\bar{u}(0, w))_{, l} \\
(\bar{\varphi}(0, w))_{, l} \\
(\bar{\psi}(0, w))_{, l} \\
(\bar{T}(0, w))_{, l}
\end{array}\right], \\
& a_{0}=e^{-\lambda_{1} x}\left[1-\frac{\lambda_{1} \lambda_{2}\left(\lambda_{3}+\lambda_{4}\right)+\lambda_{1} \lambda_{3} \lambda_{4}}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}+\frac{\lambda_{1}^{2}\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}+\right. \\
& \left.-\frac{\lambda_{1}^{3}}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}\right]-e^{-\lambda_{2} x}\left[\frac{\lambda_{1}^{2}\left(\lambda_{3}+\lambda_{4}\right)+\lambda_{1} \lambda_{3} \lambda_{4}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)}+\right. \\
& \left.-\frac{\lambda_{1}{ }^{2}\left(\lambda_{1}+\lambda_{3}+\lambda_{4}\right)}{\left.\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)\right)}+\frac{\lambda_{1}{ }^{3}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)}\right]+ \\
& -e^{-\lambda_{3} x}\left[\frac{\lambda_{1}^{2}\left(\lambda_{2}+\lambda_{4}\right)+\lambda_{1} \lambda_{2} \lambda_{4}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}-\frac{\lambda_{1}^{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{4}\right)}{\left.\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)\right)}+\right. \\
& \left.+\frac{\lambda_{1}^{3}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3 s}-\lambda_{4}\right)}\right]-e^{-\lambda_{4} x}\left[\frac{\lambda_{1}^{2}\left(\lambda_{2}+\lambda_{3}\right)+\lambda_{1} \lambda_{2} \lambda_{3}}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}+\right. \\
& \left.-\frac{\lambda_{1}^{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}+\frac{\lambda_{1}^{3}}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}\right] \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}=-e^{-\lambda_{1} x}\left[\frac{\lambda_{2}\left(\lambda_{3}+\lambda_{4}\right)+\lambda_{3} \lambda_{4}}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}\right]-e^{-\lambda_{2} x}\left[\frac{\lambda_{1}\left(\lambda_{3}+\lambda_{4}\right)+\lambda_{3} \lambda_{4}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)}\right]+ \\
& -e^{-\lambda_{3} x}\left[\frac{\lambda_{1}\left(\lambda_{2}+\lambda_{4}\right)+\lambda_{2} \lambda_{4}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}\right]-e^{-\lambda_{4} x}\left[\frac{\lambda_{1}\left(\lambda_{2}+\lambda_{3}\right)+\lambda_{2} \lambda_{3}}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}\right], \\
& a_{2}=-e^{-\lambda_{1} x}\left[\frac{\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}\right]-e^{-\lambda_{2} x}\left[\frac{\left(\lambda_{1}+\lambda_{3}+\lambda_{4}\right)}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)}\right]+ \\
& -e^{-\lambda_{3} x}\left[\frac{\left(\lambda_{1}+\lambda_{2}+\lambda_{4}\right)}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}\right]-e^{-\lambda_{4} x}\left[\frac{\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}\right], \\
& a_{3}=-e^{-\lambda_{1} x}\left[\frac{1}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}\right]-e^{-\lambda_{2} x}\left[\frac{1}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)}\left[\frac{1}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}\right] .\right. \\
& -e^{-\lambda_{3} x}\left[\frac{1}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}\right]+
\end{aligned}
$$

APPENDIX II

$$
\begin{aligned}
& Q_{1}=P_{1}\left(Z_{1}+N_{1} Z_{3}\right)+P_{2}\left(a_{3}^{0} R_{5}\right)+P_{3}\left(a_{3}^{0} R_{9}\right)-a_{3}^{0} R_{13}, \\
& Q_{2}=P_{1} R_{1} Z_{4}+P_{2}\left(a_{0}^{0}+a_{2}^{0} N_{6}\right)+P_{3}\left(a_{0}^{0}+a_{2}^{0} N_{11}\right)-a_{2}^{0} N_{14}, \\
& Q_{3}=P_{1} R_{2} Z_{4}+P_{2}\left(a_{2}^{0} N_{7}\right)+P_{3}\left(a_{0}^{0}+a_{2}^{0} N_{11}\right)-a_{2}^{0} N_{15}, \\
& Q_{4}=P_{1} R_{3} Z_{4}+P_{2}\left(a_{2}^{0} N_{8}\right)+P_{3}\left(a_{2}^{0} N_{12}\right)-\left(a_{0}^{0}+a_{2}^{0} N_{16}\right), \\
& Q_{5}=P_{4} R_{5} Z_{4}+P_{5} R_{9} Z_{4}, Q_{6}=P_{4}\left(Z_{1}+N_{6} Z_{3}\right)+P_{5} N_{10} Z_{3}, \\
& Q_{7}=P_{4} N_{7} Z_{3}+P_{5}\left(Z_{1}+N_{11} Z_{3}\right), Q_{8}=P_{4} N_{8} Z_{3}+P_{5} N_{12} Z_{3}, \\
& Q_{9}=P_{5} R_{5} Z_{4}+P_{6} R_{9} Z_{4}, Q_{10}=P_{5}\left(Z_{1}+N_{6} Z_{3}\right)+P_{6} N_{10} Z_{3}, \\
& Q_{11}=P_{5} N_{7} Z_{3}+P_{6}\left(Z_{1}+N_{11} Z_{3}\right), Q_{12}=P_{5} N_{8} Z_{3}+P_{6} N_{12} Z_{3}, \\
& Q_{13}=a_{3}^{0} R_{13}, Q_{14}=a_{2}^{0} N_{14}, Q_{15}=a_{2}^{0} N_{15}, Q_{16}=a_{0}^{0}+a_{2}^{0} N_{16}
\end{aligned}
$$

where
$P_{1}=\frac{\lambda+2 \mu}{\beta T_{0}}, \quad P_{2}=\frac{b \alpha_{1}}{k_{1} \omega^{2} \beta T_{0}}, \quad P_{3}=\frac{d \alpha_{1}}{k_{1} \omega^{2} \beta T_{0}}, \quad P_{4}=\frac{\alpha_{1}}{k_{1} \omega^{2}}, \quad P_{5}=\frac{b_{1} \alpha_{1}}{\alpha k_{1} \omega^{2}}, \quad P_{6}=\frac{\gamma \alpha_{1}}{\alpha k_{1} \omega^{2}}$,

$$
\begin{aligned}
& Z_{1}=-\lambda_{1} D_{11}-\lambda_{2} D_{12}-\lambda_{3} D_{13}-\lambda_{4} D_{14}, \quad Z_{2}=-\lambda_{1} D_{21}-\lambda_{2} D_{22}-\lambda_{3} D_{23}-\lambda_{4} D_{24}, \\
& Z_{3}=-\lambda_{1} D_{31}-\lambda_{2} D_{32}-\lambda_{3} D_{33}-\lambda_{4} D_{34}, \quad Z_{4}=-\lambda_{1} D_{41}-\lambda_{2} D_{42}-\lambda_{3} D_{43}-\lambda_{4} D_{44}, \\
& Y_{I}=-\lambda_{1} D_{I 1} e^{-\lambda_{1} x}-\lambda_{2} D_{I 2} e^{-\lambda_{2} x}-\lambda_{3} D_{13} e^{-\lambda_{3} x}-\lambda_{4} D_{14} e^{-\lambda_{4} x}, \\
& Y_{2}=-\lambda_{1} D_{I 1} e^{-\lambda_{1} x}-\lambda_{2} D_{I 2} e^{-\lambda_{2} x}-\lambda_{3} D_{13} e^{-\lambda_{3} x}-\lambda_{4} D_{14} e^{-\lambda_{4} x}, \\
& Y_{3}=-\lambda_{1} D_{21} e^{-\lambda_{1} x}-\lambda_{2} D_{22} e^{-\lambda_{2} x}-\lambda_{3} D_{23} e^{-\lambda_{3} x}-\lambda_{4} D_{24} e^{-\lambda_{4} x}, \\
& Y_{4}=-\lambda_{1} D_{31} e^{-\lambda_{1} x}-\lambda_{2} D_{32} e^{-\lambda_{2} x}-\lambda_{3} D_{33} e^{-\lambda_{3} x}-\lambda_{4} D_{34} e^{-\lambda_{4} x}, \\
& S_{1}=P_{1}\left(Y_{1}+N_{1} Y_{3}\right)+P_{2}\left(l_{21}\right)+P_{3} l_{31}-l_{41}, \quad S_{2}=P_{1}\left(R_{1} Y_{4}\right)+P_{2}\left(l_{22}\right)+P_{3}\left(l_{32}\right)-l_{42}, \\
& S_{3}=P_{1}\left(R_{2} Y_{4}\right)+P_{2}\left(l_{23}\right)+P_{3}\left(l_{33}\right)-l_{43}, \quad S_{4}=P_{1} R_{3} Y_{4}+P_{2}\left(l_{24}\right)+P_{3}\left(l_{34}\right)-\left(l_{44}\right), \\
& S_{5}=P_{4} R_{5} Y_{4}+P_{5} R_{9} Y_{4}, \quad S_{6}=P_{4}\left(Y_{4}+N_{6} Y_{3}\right)+P_{5} N_{10} Y_{3}, \\
& S_{7}=P_{4} N_{7} Y_{3}+P_{5}\left(Y_{1}+N_{11} Y_{3}\right), \quad S_{8}=P_{4} N_{8} Y_{3}+P_{5} N_{12} Y_{3} \\
& S_{9}=P_{5} R_{5} Y_{4}+P_{6} R_{9} Y_{4}, \quad S_{10}=P_{5}\left(Y_{1}+N_{6} Y_{3}\right)+P_{6} N_{10} Y_{3}, \\
& S_{11}=P_{5} N_{7} Y_{3}+P_{6}\left(Y_{1}+N_{11} Y_{3}\right), \quad S_{12}=P_{5} N_{8} Y_{3}+P_{6} N_{12} Y_{3} \\
& D_{11}=1-\frac{\lambda_{1} \lambda_{2}\left(\lambda_{3}+\lambda_{4}\right)+\lambda_{1} \lambda_{3} \lambda_{4}}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}+\frac{\lambda_{1}^{2}\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}+ \\
& -\frac{\lambda_{1}{ }^{3}}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}, \\
& D_{12}=-\left[\frac{\lambda_{1}^{2}\left(\lambda_{3}+\lambda_{4}\right)+\lambda_{1} \lambda_{3} \lambda_{4}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)}-\frac{\lambda_{1}^{2}\left(\lambda_{1}+\lambda_{3}+\lambda_{4}\right)}{\left.\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)\right)}+\right. \\
& \left.+\frac{\lambda_{1}^{3}}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)}\right], \\
& D_{13}=-\left[\frac{\lambda_{1}^{2}\left(\lambda_{2}+\lambda_{4}\right)+\lambda_{1} \lambda_{2} \lambda_{4}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}-\frac{\lambda_{1}^{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{4}\right)}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}+\right. \\
& \left.+\frac{\lambda_{1}^{3}}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}\right],
\end{aligned}
$$

$$
\begin{aligned}
& D_{14}=-\left[\frac{\lambda_{1}^{2}\left(\lambda_{2}+\lambda_{3}\right)+\lambda_{1} \lambda_{2} \lambda_{3}}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}-\frac{\lambda_{1}^{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}+\right. \\
& \left.+\frac{\lambda_{1}^{3}}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}\right], \\
& D_{31}=-\frac{\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right)}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}, \quad D_{32}=-\frac{\left(\lambda_{1}+\lambda_{3}+\lambda_{4}\right)}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)}, \\
& D_{33}=-\frac{\left(\lambda_{1}+\lambda_{2}+\lambda_{4}\right)}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}, \quad D_{34}=-\frac{1}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)}, \\
& D_{41}=-\frac{1}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}-\lambda_{4}\right)}, \quad D_{42}=-\frac{1}{\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{4}\right)}, \\
& D_{43}=-\frac{1}{\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{4}\right)}, \quad D_{44}=-\frac{1}{\left(\lambda_{4}-\lambda_{1}\right)\left(\lambda_{4}-\lambda_{2}\right)\left(\lambda_{4}-\lambda_{3}\right)},
\end{aligned}
$$

$$
\Gamma=\left|\begin{array}{cccc}
Q_{1} & Q_{2} & Q_{3} & Q_{4} \\
Q_{5} & Q_{6} & Q_{7} & Q_{8} \\
Q_{9} & Q_{10} & Q_{11} & Q_{12} \\
Q_{13} & Q_{14} & Q_{15} & Q_{16}
\end{array}\right|, \quad \Gamma_{1}=\left|\begin{array}{cccc}
-F_{1} & Q_{2} & Q_{3} & Q_{4} \\
-F_{1} & Q_{6} & Q_{7} & Q_{8} \\
-F_{1} & Q_{10} & Q_{11} & Q_{12} \\
F_{2} & Q_{14} & Q_{15} & Q_{16}
\end{array}\right|,
$$

$$
\Gamma_{2}=\left|\begin{array}{cccc}
Q_{1} & -F_{1} & Q_{3} & Q_{4} \\
Q_{5} & -F_{1} & Q_{7} & Q_{8} \\
Q_{9} & -F_{1} & Q_{11} & Q_{12} \\
Q_{13} & F_{2} & Q_{15} & Q_{16}
\end{array}\right|, \quad \Gamma_{3}=\left|\begin{array}{cccc}
Q_{1} & Q_{2} & -F_{1} & Q_{4} \\
Q_{5} & Q_{6} & -F_{1} & Q_{8} \\
Q_{9} & Q_{10} & -F_{1} & Q_{12} \\
Q_{13} & Q_{14} & F_{2} & Q_{16}
\end{array}\right|,
$$

$$
\Gamma_{4}=\left|\begin{array}{lllr}
Q_{1} & Q_{2} & Q_{3} & -F_{1} \\
Q_{5} & Q_{6} & Q_{7} & -F_{1} \\
Q_{9} & Q_{10} & Q_{11} & -F_{1} \\
Q_{13} & Q_{14} & Q_{15} & F_{2}
\end{array}\right|,
$$

and $a_{0}^{0}=a_{0}, \quad a_{2}^{0}=a_{2}, a_{3}^{0}=a_{3}, \quad$ at $x=0, \quad A_{1}=\frac{\Gamma_{1}}{\Gamma}, \quad A_{2}=\frac{\Gamma_{2}}{\Gamma}, \quad A_{3}=\frac{\Gamma_{3}}{\Gamma}, \quad A_{4}=\frac{\Gamma_{4}}{\Gamma}$.

[^0]: * To whom correspondence should be addressed

