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The present investigation is concerned with one dimensional problem in a homogeneous, isotropic 
thermoelastic medium with double porosity structure in the presence of Hall currents subjected to 
thermomechanical sources. A state space approach has been applied to investigate the problem. As an application 
of the approach, normal force and thermal source have been taken to illustrate the utility of the approach. The 
expressions for the components of normal stress, equilibrated stress and the temperature change are obtained in 
the frequency domain and computed numerically. A numerical simulation is prepared for these quantities. The 
effect of the Hartmann number is depicted graphically on the resulting quantities for a specific model. Some 
particular cases of interest are also deduced from the present investigation. 
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1. Introduction 
 
 Porous media theories play an important role in many branches of engineering including the 
materials science, petroleum industry, chemical engineering, biomechanics and other fields of engineering. 
The representation of a fluid saturated porous medium as a single phase material has been virtually 
discarded. The material with pore spaces such as concrete can be treated easily because all concrete 
ingredients have the same motion if the concrete body is deformed. However, the situation is more 
complicated if the pores are filled with liquid and in that case the solid and liquid phases have different 
motions. Due to these different motions, different material properties and the complicated geometry of pore 
structures, the mechanical behavior of a fluid saturated porous thermoelastic medium becomes very difficult. 
So researchers have tried to overcome this difficulty and we can find many studies on porous media in the 
literature. A brief historical background of these theories is given by de Boer [1, 2]. 
 The double porosity model represents a new possibility for the study of important problems 
concerning the civil engineering. It is well-known that, under super- saturation conditions due to water of 
other fluid effects, the so called neutral pressures generate unbearable stress states on the solid matrix and on 
the fracture faces, with severe (sometimes disastrous) instability effects like landslides, rock fall or soil 
fluidization (a typical phenomenon connected with propagation of seismic waves). In such a context, it 
seems possible, acting suitably on the boundary pressure state, to regulate the internal pressures in order to 
deactivate the noxious effects related to neutral pressures. 
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 Wilson and Aifanits [3] presented the theory of consolidation with the double porosity. Khaled et al. 
[4] employed a finite element method to consider the numerical solutions of the differential equation of the 
theory of consolidation with double porosity developed by Aifantis [3]. Wilson and Aifantis [5] discussed 
the propagation of acoustics waves in a fluid saturated porous medium. Various authors discussed different 
problems in double porous media [6]-[14]. Svanadze [15]-[19] investigated some problems on elastic solids, 
viscoelastic solids and thermoelastic solids with double porosity. Scarpetta et al. [20, 21] proved the 
uniqueness theorems in the theory of thermoelasticity for solids with double porosity and also obtained the 
fundamental solutions in the theory of thermoelasticity for solids with double porosity. 
 In recent years the state space description of linear systems has been used extensively in various 
areas of engineering, such as the analysis of control systems. The state space approach offers an attractive 
way to avoid the difficulties of the traditional linear model approach. The state –space representation is a 
mathematical model of a physical system as a set of input, output and state variables related by first-order 
differential equations. To abstract away from the number of inputs, outputs and states, the variables are 
expressed as vectors. If the dynamical system is linear and time invariant, the differential and algebraic 
equations may be written in a matrix form. The state-space representation provides a convenient and 
compact way to model and analyze systems with multiple inputs and outputs. 
 Bahar and Hetnarski [22]-[26] investigated a good number of problems in thermoelasticity by using 
the state space approach. Also Ezzat et al. [27], Maghraby et al.[28], Youssef and Al-Lehaibi [29], Othman 
[30], Elisbai and Youseff [31] and Sherief and El-Sayed [32] investigated different types of problems in 
different media by using the state space approach. 
 The foundations of magnetoelasticity were presented by Knopoff [33] and Chadwick [34] and 
developed by Kaliski and Petykiewicz [35]. Attention is paid to the interaction between the magnetic field 
and strain field in a thermoelastic solid due to its many applications in the fields of geophysics, plasma 
physics and related topics.  
 When the magnetic field is very strong, the conductivity will be a tensor and the effect of Hall 
current cannot be neglected. The conductivity normal to the magnetic field is reduced due to the free 
spiraling of electrons and ions about the magnetic lines of force before suffering collisions and a current is 
induced in a direction normal to both the electric and magnetic fields. This phenomenon is called the Hall 
effect. Authors such as Sarkar and Lahiri [36], Salem [37], Zakaria [38]-[40], Attia [41] have considered the 
effect of Hall currents for two dimensional problems in micropolar thermoelasticity. 
 In the present paper, we formulate the state space approach to the boundary value problem for a 
thermoelastic material with double porosity structure in the presence of Hall current subjected to 
thermomechanical sources. The expressions for normal stress, equilibrated stresses and temperature 
distribution are obtained in closed form, computed numerically and represented graphically for normal force 
and thermal source. 
 
2 Basic equations 
 
 Following Iesan and Quintanilla [42], the field equations and the constitutive relations for a 
homogeneous thermoelastic material with double porosity structure, when the Hall current is taken into 
account, can be written as: 
Eequation of motion 
 
    , , , ,i j ji i i i i iu u b d T F u             ,                                                     (2.1)                     
 

equilibrated stress equations of motion 
 

  ,Δ Δ1 r r 1 3 1 1b bu T            ,                                                          (2.2)     

                                                           
  ,Δ Δ  1 r r 3 2 2 2b du T            ,                                                           (2.3)                     
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equation of heat conduction 
 

  *  2
0 ii 1 0 2 0T e T T C T K T            ,                                                                   (2.4)                     

 

constitutive relations 
 

  ij rr ij ij ij ij ijt e 2 e b d T           ,                                                         (2.5)        

                                         
  , ,  i i 1 ib     ,                                                                                                (2.6)       

                                                                           
  , ,   i 1 i ib                                                                                                     (2.7)                     
 

where i 0 ijr j rF J H    is the Lorentz force.                  

 The generalized Ohm’s law including Hall current is 
 

  ,
0

i 0 i 0 ijr j t r ijr j r
e

J E u H J H
en

 
       

 
                                                   (2.8) 

 

where  2
0 e e en e t m   is the electrical conductivity; 0  is the magnetic permeability; e is the charge of an 

electron; en  is the number density of electrons; et  is the electron collision time; em  is the electron mass; iE  

is the intensity tensor of the electric field;   and   are Lame’s constants;   is the mass density; 

   t3 2      ;  t  is the coefficient of  linear thermal expansion; *C  is the specific heat at constant 

strain;  iu  is the displacement components; ijt  is the stress tensor; ijr  is the permutation symbol; 0  is the 

magnetic permeability; rJ  is the conduction current density; 1 and 2  are coefficients of equilibrated 

inertia; 1  is the volume fraction field corresponding to pores and 2  is the volume fraction field 

corresponding to fissures;   and   are the volume fraction fields corresponding to 1  and 2 , respectively;

i  is the equilibrated stress corresponding to 1 ; i  is the equilibrated stress corresponding to 2 , K  is the 

coefficient of thermal conductivity and , , , , ,1 1 2b d b     are constitutive coefficients;  ij  is the Kronecker’s 

delta; T  is the temperature change measured form the absolute temperature ( )0 0T T 0 , a superposed dot 
represents differentiation with respect to time variable t. 
 

    ˆˆ ˆ
1 2 3

i j k
x x x

  
   

  
,         

2 2 2
2

2 2 2
1 2 3x x x

  
   

  
,            

 
are the gradient and Laplacian operators, respectively. 
 
3. Formulation and solution of the problem 
 
 We consider a homogeneous, isotropic, perfectly conducting thermoelastic solid with double 
porosity occupying the region 0 x   . For a one dimensional problem, we take 

       , , , , , , ,1 1 1 1 1u x t x t x t T x t  . A uniform very strong magnetic field of strength 0H  is assumed to be 

applied in the positive y –direction and we also assume that E 0 . Under these assumptions, the generalized 
Ohm’s law gives 1 2J J 0   everywhere in the medium. 

 The current density components  3J  is given by 
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    0 0 0 1
3 2

H u
J

t1 m

       
                                                                                  (3.1)    

 
where e em t   is the Hall parameter and /e 0 0 ee H m    is the electron frequency. 
 Let us introduce the following non-dimensional variables 
 

    ,  , , ,
2 2

ij 0 0 01 1
1 1 1 1 ij 1

1 1 0

t H
x x u u t M t t

c c T

          
 

,   

   (3.2) 

     ,  , , ,   
2 2

1 1 1 1 1 1
i i i i

1 1 0 1 1

k k c cT
T

T

                            
         

where 
*

,
2

2 1
1 1

C c2
c

K

  
  


 and M is the Hartmann number or magnetic parameter. 

 Making use of dimensionless quantities given in Eqs (3.2) in Eqs (2.1)-(2.4), (dropping primes for 
convenience), and assuming the time harmonic solution of the resulting equations, we obtain after some 
simplifications 
 
    , , , ,11 1 2 1 3 1 4 1N N N Nu u T     ,                                          (3.3)    

 
  , ,11 5 1 6 7 8N Nu N N T      ,                                                             (3.4) 

 
    , ,11 9 1 10 11 12N N N Nu T      ,                                                         (3.5)  

 
    , ,11 13 1 14 15 16N N N NT u T                                                            (3.6)    

                                                                                       
where 
 

    ,  , , ,  ,  ,2 5 6
1 2 1 3 2 4 3 1 22

4 4

M
N i N N N M M

1 m

                 
  

 

    , , , , , ,
2

7 8 9 10 1312
3 4 5 6 7 8

4 4 4 11 11 11

M M M M M M
     

     
     

  

 

  ,
2

14
9

11

M
 




   , , ,  , ,15 17 18 19
10 11 12 13 14

11 20 20 20 20

1
M M M M M

   
    

    
  

 

  16
20 i


 

 
,     , ,  ,   13 16 14 17 15 18 16N N N N 1       ,  (3.7) 

 

    , , , ,1 7 2 1 8 3 1 9 4
15 1 6 5 6 7

15 15 15

M M M M M M M M M
M 1 M M N N N

M M M

  
     ,  
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  1 10 5
8

15

M M M
N

M


 ,      ,  , ,9 6 5 7 10 6 6 8 11 6 7 9N M N M N M N M N M N M       

   

    12 6 8 10N M N M  ,   
βTbα dα α

,  ,  , ,01 1
1 2 3 42 2 2 2 2 2

1 1 1 1 1 1 1 1 1C k C k C C k
       

    
 

 

  , ,1 1
5 6 72 2

11 1 1 1

b b

C k k


     

 
,    , , ,3 1 0 1

8 9 102 2
11 1 1 2

T b

k C k

 
     


 

 

  , , ,31 2
11 12 13 142 2 2

1 21 2 2 1 2 1

dk

kC k k k

 
       

  
, 

 

   , , ,
2 2 2

2 0 1 1 1 1 1 2 1 1
15 16 17 183 3

1 2 1 1 1 1 1

T k C C C

k K Kk Kk

     
       

   
.                 

 
4. State -space formulation 
 
 Choosing as state variables the displacement u , volume fraction and   , temperature change T  in 

the x - direction, then the equations can be written in the matrix form as 
 

  
     ,

,
dV x

A V x
dx


                                                          (4.1)                     

 
and the values of ( ), ( , )A V x   are given in Appendix I. 
 The formal solution of the system (4.1) can be written in the form  
            

       , exp ,   V x A x V 0       . (4.2)                     

    
The value of ( , )V 0   is given in Appendix I. 

 We shall use the well-known Cayley-Hamilton theorem to find the form of the matrix exp[ ( ) ]A x . 
The characteristics equation of the matrix ( ) A  can be written as 

 

  8 6 4 2
1 2 3 4D D D D 0                                      (4.3)                     

 
where 
 

  ,1 1 6 11 16 2 5 3 9 4 13D N N N N N N N N N N          
 

  

 ,

2 1 6 1 11 1 16 6 11 6 16 7 10 8 14 11 16

12 15 2 7 9 3 6 9 2 5 11 2 5 16 3 5 10 3 9 16

2 8 13 4 5 14 4 6 13 4 9 15 3 12 13 4 11 13

D N N N N N N N N N N N N N N N N

N N N N N N N N N N N N N N N N N N N N

N N N N N N N N N N N N N N N N N N

      

      

  



 





-
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3 6 11 16 7 10 16 1 6 11 1 7 10 1 6 16 1 8 14 1 11 16

1 12 15 6 12 15 7 12 14 8 10 15 8 11 14 2 7 9 16 3 6 9 16

2 8 9 15 3 8 9 14 4 6 9 15 4 7 9 14 2 5 11 16 3 5 10 16

2 5 12

D N N N N N N N N N N N N N N N N N N N N N

N N N N N N N N N N N N N N N N N N N N N N N

N N N N N N N N N N N N N N N N N N N N N N N N

N N N

        

       

      



,
15 2 7 12 13 2 8 11 13 3 5 12 14 3 6 12 13 3 8 10 13

4 5 10 15 4 5 11 14 4 6 11 13 4 7 10 13

N N N N N N N N N N N N N N N N N N N N N

N N N N N N N N N N N N N N N N

     

   

 

  (  ) ( ) (  )4 1 6 11 16 12 15 1 7 12 14 10 16 1 8 10 15 11 14D N N N N N N N N N N N N N N N N N N         (4.4)                     
 

Equation (4.3) is biquadrate in ,2  yields four roots: , , , .1 2 3 4     
 Now the Taylor series expansion for the matrix exponential in Eq.(4.2) is given by 
 

   
 

exp
!

n

n 0

A x
A x

n





           
  

 .                           (4.5)                     

 
 Using the Cayley-Hamilton theorem, this infinite series can be truncated as 
 

   exp 2 3
0 1 2 3A x a I a A a A a A                                             (4.6)                     

 
where , , ,0 1 2 3a a a a  are parameters depending on x  and  . 

 According to the Cayley-Hamilton theorem the characteristic roots , , ,1 2 3 4      of the matrix 
A must satisfy Eq.(4.6). Therefore, we get 
 

   exp  2 3
1 0 1 1 2 1 3 1x a I a a a        , 

 

   exp 2 3
2 0 1 2 2 2 3 2x a I a a a        , (4.7) 

 

   exp 2 3
3 0 1 3 2 3 3 3x a I a a a        , 

 

   exp 2 3
4 0 1 4 2 4 3 4x a I a a a        . 

 
 Solving the above system of equations, we obtain the value of parameters , , ,0 1 2 3a a a a  and these 
values are given in Appendix I.  
 Therefore, we have 
 

   exp ( , )A x L x                                 (4.8)   

 
where ( , )L x w  is a  8 8 matrix with the components 

 

  , , , , , ,11 0 2 1 12 3 1 13 3 2 14 3 3 21 3 5 22 0 2 6l a a N l a R l a R l a R l a R l a a N          
 
  , , , , , ,23 2 7 24 2 8 31 3 9 32 2 10 33 0 2 11 34 2 12 41 3 13l a N l a N l a R l a N l a a N l a N l a R        , 
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  , , ,42 2 14 43 2 15 44 0 2 16 1 2 6 3 10 4 14l a N l a N l a a N R N N N N N N       , (4.9) 
 
  ,2 2 7 3 11 4 15R N N N N N N        ,3 2 8 3 12 4 16R N N N N N N     
 
  , , 5 1 5 9 1 9 13 1 13R N N R N N R N N   .                        
 
 Rewriting Eq.(4.2) with the aid of Eq.(4.8) yields 
 
  ( , ) ( , ) ( , )V x L x V 0    .                                            (4.10)                     
 
 Therefore, we obtain 
 

  

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

l l l l

l l l l

l l l l

l l l

u

lT

   
   
   
   
   

 






                                           (4.11)                     

 
5. Boundary conditions  
 
 A homogeneous isotropic thermoelastic solid with double porosity structure occupying the region 
0 x    is considered. The bounding plane x 0  is subjected to normal force and thermal source. 
Mathematically these can be written as 
 
(i)   exp[ ]11 1t F i t    ,                                                                               (5.1)     
                                                                                                                                
(ii)   exp[ ]1 1F i t     ,                                                                              (5.2)     
       
(iii)  exp[ ]1 1F i t     ,                                                                                       (5.3)     
                                                                                                                                
(iv)  exp[ ]2T F i t                                                                                     (5.4)                     
 
where 1F and 2F  are the magnitude of the force and constant temperature applied on the boundary, 
respectively. 
 Substituting the values of , , , , ,  11 1u T t   and 1  from Eqs (2.1), (2.2), (2.3), (4.10) in to Eqs (5.1)-
(5.4) and with the aid of Eqs (3.1) and (3.7), after some lengthy calculations, we obtain the normal stress, 
equilibrated stresses and temperature change as 
 

  
Γ ΓΓ Γ

Γ Γ Γ Γ
i t3 41 2

11 1 2 3 4t S S S S e  
 
 

    ,                      (5.5)    

                                                                         

  
Γ ΓΓ Γ

 
Γ Γ Γ Γ

i t3 41 2
1 5 6 7 8S S S S e  

 
 

     ,                                                    (5.6)     

                                                                       

  
Γ ΓΓ Γ

 
Γ Γ Γ Γ

i t3 41 2
1 9 10 11 12S S S S e  

  
 

    ,                                         (5.7)   
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Γ ΓΓ Γ

Γ Γ Γ Γ
i t3 41 2

41 42 43 44T l l l l e  
 





   .                                      (5.8)                     

 
 The values of  , , ,1 2 12S S S  are given in Appendix II. 

 
6. Particular cases 
 
Case 6.1: If 2F 0  in Eqs (5.5)-(5.8), we obtain the corresponding expressions for normal force. 
 
Case 6.2: If 1F 0  in Eqs (5.5)-(5.8), we get the corresponding expressions for thermal source. 

 
7. Numerical results and discussion 
 
 The material chosen for the purpose of numerical computation is copper, whose physical data is 
given by Sherief and Saleh [43] as 
 

  *.  , . , .  ,10 2 3 2 2 1 10 27 76 10 Nm c 3 831 10 m s K 3 86 10 Nm             
 

   . , ω s , .  3 1 1 11 1 3
0k 3 86 10 Ns K 1 10 T 0 293 10 K        , 

 

  . . , .,5 1 3 3
t 1 78 10 K t 0 1s 8 954 10 Kgm         .  

 
 Following Khalili [44], the double porous parameters are taken as 
 

  

.  , .  , .  ,  . ,

. , .  , . ,

10 2 10 2 5 5
2 3

5 2 5 10 2
1 1

2 4 10 Nm 2 5 10 Nm 1 3 10 N 1 1 10 N

0 16 10 Nm b 0 12 10 N d 0 1 10 Nm

   

  

           

      

 

 

   . , . , .  5 2 12 2 2 10 2
2 10 219 10 Nm k 0 1456 10 Nm s b 0 9 10 Nm          , 

 

  .  ,  .10 2 12 2 2
1 22 3 10 Nm k 0 1546 10 Nm s       . 

 

 Following Zakaria [40], the electric constants are taken as 
 

  .  / . .  , 5 2
0 9 36 10 Col Cl cm s     

 

  / .8
0H 10 Col cm  s. 

 

 The software MATLAB has been used to determine the values of normal stress, equilibrated stresses 
and temperature change. Figures 1-4 and Figs 5-8 depict the variations of normal stress, equilibrated stresses 
and temperature distribution with the Hartmann number (M) with respect to distance x for normal force and 
thermal source, respectively. In all the figures, the solid line corresponds to the value of M 0 , small 
dashed line corresponds to the value of M 1  and big dashed line corresponds to the value of .M 1 5 . 
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Normal Force  
 
 Figure 1 shows the variation of normal stress 11t  with respect to distance x. The variation is similar 
for all values of the Hartmann number. It is noticed that with the increase in the value of M, the value of 
normal stress also increases. 
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        Fig.1. Variation of normal stress 11t  w.r.t. x.                Fig.2. Variation of equilibrated stress 1  w.r.t x. 
 
 Figures 2 and 3 depict the variations of equilibrated stresses 1  and 1  with respect to distance x, 

respectively. For  M 0 , the value of 1  and 1  increases for 0 x 2  , again decreases for 2 x 4   and then 

again increases for 4 x 6   and further decreases away from the source. For M 1  and 1.5, a similar behavior 
is noticed near the application of the source whereas on opposite behavior is noticed away from the source. 
 Figure 4 represents the variation of temperature change T with respect to distance x. It is found that 
the behavior is similar for  and  M 0 1 while it becomes reverse for .M 1 5 . 
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     Fig.3. Variation of equilibrated stress  1  w.r.t. x.           Fig.4. Variation of temperature change T w.r.t x. 
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Thermal Source 
 
 Figure 5 depicts the variation of normal stress 11t  with respect to distance x. The variation is similar 

for all the three cases under consideration ( , , . )M 0 1 1 5 . It is noticed that with the increase in the value of 
M, the value of normal stress also increases. 
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         Fig.5. Variation of normal stress 11t  w.r.t. x.            Fig.6. Variation of equilibrated stress 1  w.r.t x. 
 
 Figures 6 and 7 show the variation of equilibrated stresses 1  and 1  with respect to distance x, 

respectively. The variation is of oscillatory nature for M 0  while the same behavior is noticed for 
 and .M 1 1 5 , i.e., monotonically increasing and decreasing. 
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Fig.7. Variation of equilibrated stress  1  w.r.t. x.               Fig.8. Variation of temperature change T w.r.t  x. 
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 Figure 8 represents the variation of temperature change T with respect to distance x. It is noticed that 
with the increase in the value of M, the value of temperature change decreases. 
 
8 Conclusion 
 
 The behaviour of normal stress, equilibrated stresses and temperature distribution in an isotropic 
homogeneous thermoelastic material with double porosity structure under the effect of Hall currents has been 
investigated for the normal force and thermal source by using the state space approach. It is observed that 
with the increase in the value of the Hartmann number, normal stress also increases. The behavior of 
equilibrated stresses is oscillatory in nature for M 0  where for and . ,M 1 1 5  the behavior is same near 
the application of the source while a reverse behavior is observed away from the source. For normal force, 
the behavior of temperature change is similar for M and 0 1 , whereas an opposite behavior is observed for 

.M 1 5  while in the case of thermal source, the value of temperature changes decreases with the increase in 
value of the Hartmann number. 
 
Nomenclature 
 
 , , , , ,1 1 2b d b     - constitutive coefficients 

  * C    specific heat at constant strain 
  iE    intensity tensor of the electric field 

   e    charge of an electron 
  rJ    conduction current density  

  K    coefficient of  thermal conductivity  
  em    electron mass  

  en    number density of electrons 

 T = *
0T T    small temperature increment  

  et    electron collision time 

  ijt    stress tensor  

   iu    displacement components 

   t    coefficient of linear thermal expansion 

   ij    Kronecker’s delta 

  ijr    permutation symbol 

  i    equilibrated stress corresponding to 2  

   1 , 2    coefficients of equilibrated inertia 

   ,     Lame’s constants 
  0     magnetic permeability 

  1    volume fraction field corresponding to pores  

  2    volume fraction field corresponding to fissures  

       mass density 
  0    electrical conductivity 

  i    equilibrated stress corresponding to 1  

      volume fraction field corresponding to 1   

      volume fraction field corresponding to 2  
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APPENDIX I 
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